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ELASTIC DISPLACEMENT OF PRIMARY WAVES FROM
EXPLOSIVE SOURCES

By Joskpn W. BERrG, JR.,, AND GEORGE E. PAPAGEORGE

ABSTRACT

Equations derived from Blake's (1952) model of diverging waves from a point source were
programmed for computer analysis. Variations of the displacement resulting from changes in
the pressure function, propagational velocity, range, and cavity size were investigated. Re-
sults of the research indicate that: (1) a step pressure function used with this model gives dis-
placements that closely approximate the displacements measured at 0.4 km from the Gnome
nuclear explosion; (2) near the source, long-period displacements are inherent with this model;
(3) the periods of the maximum Fourier transform amplitude of the radiation field is propor-
tional to the equivalent cavity radius; (4) the peak displacementsscale to the two-thirds power
of charge size for values of a between 80 (0.5 kt) and 600 m (275 kt); and (5) between 0.1 and
3.0 cps, the amplitudes of given frequencies scale to the first power of charge size for values of
a between 145 (3 kt) and 305 m (28 kt). In general, Fourier amplitudes at frequencies below
the natural frequency of the cavity scale to the first power of charge size, and Fourier am-
plitudes at frequencies above the natural frequency of the cavity scale to a fractional power of
charge size. It is suggested that this may be a good model with which to compare near-source
observations of seismic phenomena.

INTRODUCTION

This investigation compares a theoretical description with results derived from
from observed data for compressional seismic waves generated by an explosive
source. In this work, theoretical descriptions of ground displacements are con-
sidered in the elastic region only, between the ranges of 0.46 and 15.2 kilometers.

Mathematical descriptions of spherically diverging elastic waves instigated by
pressure functions have been given by Sharpe (1942), Duvall and Atchison (1950),
and Blake (1952). Blake’s model was chosen for this investigation. In this model,
long-period ground displacements which decay exponentially with the pressure,
and oscillatory transients of the radiation ficld are important for the ranges con-
sidered. Very little information regarding long-period displacements is available,
but some observations have been made by Weart (1962) and Werth and Herbst
(1963).

In the following work, variations of ground displacement have been considered
with changes in pressure functions, range, compressional wave propagational
velocity, and cavity sige. '

ANALYSBES
Source
For an infinite homogeneous, isotropic medium, the solution to the wave equa-
tion is
o =AM )
where ¢ is a potential function of displacement, A is a constant, r is range, r =
0947



948 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA

¢ — (r — a)/e, a is the radius of the cavity, ¢ is time, and ¢ is compressional wave

propagational velocity.
The boundary condition requires that the radial stress in the cavnty wall equals
the pressure within the cavity. This is expressed by

- [@+ (2L o

where: P(t) is the pressure function: p is density; u is displacement; and ¢ is Poisson’s
ratio, taken to be 0.25 in this work. Blake obtains the following formal solution
of the wave equation in terms of displacement potential, ¢, for any given pressure

function P(vy) -
P( ) —jx(y—r)(e/a)
.[ L CRTy = v kel 3)

where: r = wa/c; k = 3(1 — ¢)(1 — 20)”"; w is angular frequency; and v is an
integration parameter.
The pressure functions

¢ = 2rrpc

P(‘Y) . I)o(e—ﬂl'r — e—an) fOl"y 20
and _
P(v) =0 fory <0 (4)

were used to solve Equation (3). A pressure function of this form allows choice
in shaping the pressure by varying the values of a; and oy between 0 and <.

Equation (3) was solved, and it was then differentiated with respect to r to
give the following equation for displacement.

- Poa [e—cn (C - ral) + e—u.r{ _ !(008 -
plwe + (a0 — an)?] re P @

a — oy . a (a0 — a)ae + w0’ .
e 8in wer +—c-coswor+ sin wyr

wWol

Poa —aer [C — Tag —ag? 1
-p"[wo’+(ao—m)’l[e ’( re )+e {_'—'(M‘M

_ _ 2
— %" Min wof) + 2 cos wor + (a” ar)ao + sin w.r}]
wo c el

(5)

Equation (5) contains two types of terms: those which have a geometrical
divergence of 1./+*; and those which have a divergence of 1 r. Included in the terms
whose amplitudes diminish as 1 /* are those which depend upon the exponential
decay of the forcing function. These terms represent long-period displacements
and, in the case of a pressure stepwave, part of these terms represent permanent
displacement. The permanent displacement results from the infinite duration of
the pressure on the wall of the cavity.

Equation (5) was programmed for an IBM 1620 Computer to investigate the
effect of pressure shape and other factors on the ground displacement of the primary
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waves. Iigure 1 shows the approximations to the ground displacement measured
(Weart, 1962) at 208 meters from the Gnome nuclear explosion. The approxima-
tions shown on figure 1 were made using Equation (5), &1 = 0 and a; = =, and
assuming that the equivalent radius, a (the radius beyond which the medium
behaves elastically ), for a one-kiloton yield closely coupled to the medium is 100
meters (Carpenter, Savill, and Wright, 1962). It was assumc] that a scales as
W', Thus, the equivalent radius for Gnome (3 kt) was calculated to be 145
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Fua. 1. Comparison of theoretical ground displacement amplitudes with that observed from
the Ginome nuclear explosion as given by Weart (1962).

meters. If it was desired, a closer approximation to the observed data could be
obtained by changing the values of P, o, a, @, ¢, and possibly other considera-
tions. FFrom figure 1, the step pressure function [Eq. (3), a1 = 0, ay = =] would be a
close approximation to the observed data. This agrees with Latter, Lelevier,
Martinelli, and McMillan (1959).

Distance from Source

The displacement function at ranges of 0.46 km, fig. 2\, and 15.2 km, fig. 2B,
is plotted for equivalent cavity radii of 145 m (3 kt yield) and 305 m (28 kt yield).
For these caleulations the pressure was assumed to be a step function. Long-period
displacements are evident at the 0.46 km range whereas they are not as evident at
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Fi1a. 2A. Theoretical ground displacements at a range of 0.46 km from the source.
Fi16. 2B. Theoretical ground displacements at a range of 15.2 km from the source.
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the 15.2 km range. For computer calculations, all waveforms were truncated
after 1 second. It is believed that no serious omissions of data resulted from this
operation. The Fourier Transform amplitudes for frequencies of 0.1, 0.5, 1.0, and
3.0 cps are plotted against distance for these ranges. Straight lines are used to
represent the decrease of amplitude with distance for 0.5 and 0.1 cps between 0.3
and 1.6 km. "“he slopes of the line segments are — 1.9 em-sec/km. If the displace-

0.5
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F16. 5. Period of peak amplitude (see peaks marked T on Figures 4A and 4B) versus equivalent
cavity radius.

ment waveforms had not been truncated at 1 second, the amplitudes of the lower
frequencies (0.1 and 0.5 cpe) would diminish by the inverse square of the range,
and at distances greater than 13 km they would diminish as the inverse range
[see Equation (3)]. The amplitudes of higher frequencies (1.0 and 3.0 cpe) diminish
as the inverse range.

Amplitudes, Periods, and Size of Source

The Fourier Transform amplitudes versus frequency are plotted for ranges of
0.46 km (fig. 4A) and 13.2 km (fig. 4B). The long-period displacements are in
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evidence for frequencies below about 1 cps; they are considerably smaller at 15.2
km than at 0.46 km from the source. These long-period displacements have been
difficult to observe, but they have been observed near nuclear explosions (Weart,
1962, and Werth and Herbst, 196:3). However, additional evidence for their exist-
ence is desirable.
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Fii. 6A. Peak displacement amplitude versus equivalent cavity radii for range of 0.46 km,
velocity of 4.88 km/sec, and y's 0f 0, 1, 3, and 4, and ay = =.

For frequencies between 1 and 10 cpe, the amplitude peaks for the radiation
field part of the theoretical source are indicated in figures 4A and 4B by the vertioal
lines marked “7. It is easy to see the increase in frequency with decreasing e
(equivalent cavity radius). If a' is proportional to W (charge size), the shift in
period of the peak would be expected to be proportional to the equivalent cavity
radius, a, as Latter, Lelevier, Martinelli, and McMillan (1959) give the scaling
of characteristic frequency, w , 88 proportional to W', Figure 5 shows a plot of
period of peak amplitude versus cavity radius. These variables are proportional
at the two distances considered; the slopes of the straight lines vary with distanoe.
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The waveform of ground displacement as given by equation (5) depends upon
pressure pulse attenuation, ground velocity, range, and cavity size. For peak
ground displacement amplitude, 4, the exponent n in the relationship A « W"
was investigated for a practical range of the above variables. Figures 6A, 6B, 6C,
and 6D show the peak displacement amplitudes plotted against the equivalent

10

(30)
ns 0.70

R *= 0.46 km

1o f— ; » 3.52 x10° cmt/sec?

c = 244 km/sec

PEAK DISPLACEMENT AMPLITUDE IN CM

o q| xo. az-o
3 q.-l‘ azln
U d, %2, ap*®
a q.ls' q!l‘
* d =4, dys®

V . I
108 104 108
EQUIVALENT RADIUS OF CAVITY IN CM

Fig. 6B. Peak displacement amplitude versus equivalent cavity radii for range of 0.46 km,
wvelocity of 2.44 km/sec, and au’s of 0, 1, 3, and 4y and oy = .

cavity radii for values of a; between 0 and 4, and a» = . Figures 6A and 6B
are computed for velocities of 4.88 and 2.44 km/sec at a range of 0.46 km; figures
6C and 6D at a range of 15.2 km. Computations to compare the values of displace-
ments for different times along the waveform and to read the maximum displace-
ment were performed on & computer. If o’ is assumed proportional to W, values of
n in the relationship A = kW™ are seen to vary between 0.64 and 0.79° for values

* O'Brien (1960) summarised values of the exponent n given by different investigators.
Theuluunnadhetmnonmdl.& Cm h&nd used to obtain these values
was 300 1bs. A value of 0.73 for n was given by and (1900) for surface waves with
periods of 1 to 2 seconds for larger explosions.
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of a between 80 and 600 m. This is not a large variation of n. This method of relat-
ing the peak displacement amplitude to the size of the source is equivalent to
using the peak displacement from the first half cycle of a displacement-type seismo-
gram. These results are comparable to those of Werth and Herbst (1963).

It must be realized that frequency shifts with different charge sizes. Thus, it

10 "'"
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o \wo 2
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Fia. 6C. Peak displacement amplitude versus equivalent cavity radii for range of 15.2 km,
velocity of 4.88 km/sec, and ai’s 0of 0,1, 3, and 4, and @y = =,

would be expected that the amplitude of a given frequency would scale differently
to charge size than the peak displacement amplitude. The Fourier transform
amplitudes versus the equivalent cavity radii are plotted at ranges of 0.46 (fig.
7A) and 15.2 km (fig. 7B). At the 0.46 km range (fig. 7A ), the Fourier amplitudes of
frequencies between 0.1 and 3 cpe acale to the first power of charge sise (n > 1)
while thoee at 5 cps acale to the 0.78 power. The two different amplitude groupings
in figure 7A are due to the relative size of the long-period displacements compared
to the amplitudes of the radiation field at this range. At the range of 15.2 km (fig.
7B), the Fourier amplitudes between 0.1 and 1 cps scale to the first power of the
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charge size while those at 3 and 5 cps are not linear in this region. The natural
frequencies of the cavities (f;) were calculated to be 5 cps and 3 cps for equivalent
cavity radii of 145 and 305 meters, respectively, and for a compressional wave
velocity of 4.88 km/se¢. Thus, for the above range of frequencies, which are below
the natural frequencies of the cavities, the Fourier Amplitudes scale to the first
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Fia. 6D. Peak displacement amplitude versus e(}uivalent cavity radii for range of 15.2 km,
velocity of 2.44 km/sec, and ax’s of 0, 1, 3, and 4, and @z = =.

power (n X 1) of the charge size. This is in accord with Latter, Martinelli, and
Teller (1959). Moreover, an analysis of Equation (4) of their work shows that the
Fourier Amplitudes scale to the first power of the charge size for very low fre-
quencies (:: < w) and to the one-third power of the charge size for high frequencies
(@ > o).

A value of n, in the relationship 4 = W", that is different from 0.5 should not be
of great concern. The explosion radiates a spectrum of energy, and not energy at
one particular frequency in the form of a sine wave. The amplitudes of the different

* In some instances the exponent » may he as large as ¥3.
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frequencies scale differently to charge size as shown above. This was pointed out
by Peet (1960).

ConcLusions

In general, the theoretical source investigated in this research gives results com-
patible with observations made by other investigators. The results indicate that:
(1) a step pressure function used with this model gives displacements that closely
approximate the displacements measured at 0.4 km from the Gnome nuclear ex-
plosion; (2) near the source, long-period displacements are inherent with this model;
(3) the period of the maximum Fourier transform amplitude of the radiation field
is proportional to the equivalent cavity radius; (4) the peak displacements scale
to the two-thirds power of the charge size for values of a between 80 (0.5 kt) and
600 m (215 kt); and (5) between 0.1 and 3.0 cpe, the amplitudes of given frequencies
scale to the first power of charge size for values of a between 145 (3 kt) and 305 m
(28 kt). In general, Fourier amplitudes 4t frequencies below the natural frequency
of the cavity scale to the first power of charge size, and Fourier amplitudes at
frequencies above the natural frequency of the cavity scale to a fractional power of
charge size.

The long-period displacements given by this model for near-source ranges offer a
problem in that they have been difficult to observe to date. Such displacements
could be very important when considering attenuation of energy near the source,
generation of surface waves, and other seismic phenomena.
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